Impaired neuronal KCC2 function by biallelic SLC12A5 mutations in migrating focal seizures and severe developmental delay

نویسندگان

  • Hirotomo Saitsu
  • Miho Watanabe
  • Tenpei Akita
  • Chihiro Ohba
  • Kenji Sugai
  • Winnie Peitee Ong
  • Hideaki Shiraishi
  • Shota Yuasa
  • Hiroshi Matsumoto
  • Khoo Teik Beng
  • Shinji Saitoh
  • Satoko Miyatake
  • Mitsuko Nakashima
  • Noriko Miyake
  • Mitsuhiro Kato
  • Atsuo Fukuda
  • Naomichi Matsumoto
چکیده

Epilepsy of infancy with migrating focal seizures (EIMFS) is one of the early-onset epileptic syndromes characterized by migrating polymorphous focal seizures. Whole exome sequencing (WES) in ten sporadic and one familial case of EIMFS revealed compound heterozygous SLC12A5 (encoding the neuronal K(+)-Cl(-) co-transporter KCC2) mutations in two families: c.279 + 1G > C causing skipping of exon 3 in the transcript (p.E50_Q93del) and c.572 C >T (p.A191V) in individuals 1 and 2, and c.967T > C (p.S323P) and c.1243 A > G (p.M415V) in individual 3. Another patient (individual 4) with migrating multifocal seizures and compound heterozygous mutations [c.953G > C (p.W318S) and c.2242_2244del (p.S748del)] was identified by searching WES data from 526 patients and SLC12A5-targeted resequencing data from 141 patients with infantile epilepsy. Gramicidin-perforated patch-clamp analysis demonstrated strongly suppressed Cl(-) extrusion function of E50_Q93del and M415V mutants, with mildly impaired function of A191V and S323P mutants. Cell surface expression levels of these KCC2 mutants were similar to wildtype KCC2. Heterologous expression of two KCC2 mutants, mimicking the patient status, produced a significantly greater intracellular Cl(-) level than with wildtype KCC2, but less than without KCC2. These data clearly demonstrated that partially disrupted neuronal Cl(-) extrusion, mediated by two types of differentially impaired KCC2 mutant in an individual, causes EIMFS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutations in SLC12A5 in epilepsy of infancy with migrating focal seizures

The potassium-chloride co-transporter KCC2, encoded by SLC12A5, plays a fundamental role in fast synaptic inhibition by maintaining a hyperpolarizing gradient for chloride ions. KCC2 dysfunction has been implicated in human epilepsy, but to date, no monogenic KCC2-related epilepsy disorders have been described. Here we show recessive loss-of-function SLC12A5 mutations in patients with a severe ...

متن کامل

BDNF is required for seizure-induced but not developmental up-regulation of KCC2 in the neonatal hippocampus

A robust increase in the functional expression of the neuronal K-Cl cotransporter KCC2 during CNS development is necessary for the emergence of hyperpolarizing ionotropic GABAergic transmission. BDNF-TrkB signaling has been implicated in the developmental up-regulation of KCC2 and, in mature animals, in fast activity-dependent down-regulation of KCC2 function following seizures and trauma. In c...

متن کامل

KCNT1 gain-of-function mutations linked to human epilepsy are modulated by quinidine

Epilepsy of infancy with migrating focal seizures (EIMFS) and a severe form of autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) are strikingly different epilepsy syndromes, which have very recently been associated with mutations in the same gene. EIMFS is a rare early infantile epileptic encephalopathy characterized by heterogeneous migrating focal seizures, and is associated with de...

متن کامل

A variant of KCC2 from patients with febrile seizures impairs neuronal Cl− extrusion and dendritic spine formation

Genetic variation in SLC12A5 which encodes KCC2, the neuron-specific cation-chloride cotransporter that is essential for hyperpolarizing GABAergic signaling and formation of cortical dendritic spines, has not been reported in human disease. Screening of SLC12A5 revealed a co-segregating variant (KCC2-R952H) in an Australian family with febrile seizures. We show that KCC2-R952H reduces neuronal ...

متن کامل

Genetically encoded impairment of neuronal KCC2 cotransporter function in human idiopathic generalized epilepsy.

The KCC2 cotransporter establishes the low neuronal Cl(-) levels required for GABAA and glycine (Gly) receptor-mediated inhibition, and KCC2 deficiency in model organisms results in network hyperexcitability. However, no mutations in KCC2 have been documented in human disease. Here, we report two non-synonymous functional variants in human KCC2, R952H and R1049C, exhibiting clear statistical as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016